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Abstract

Illuminating the invasive strategies of alien species in mountainous regions is critical to preventing 
the increasing frequency of invasion events and enhancing our understanding of the vulnerability of 
these ecosystems. Here, we investigated differences in diversity between invasive and native species 
across an elevational gradient through field experiments conducted along a 1200 m range, combined 
with measurements of plant functional traits and environmental factors. Our results revealed signifi-
cant distinctions in diversity patterns between invasive and native species when considering multiple 
aspects of taxonomic and functional diversity at both α and β levels. Native species showed clear 
species replacement along elevation, while invasive species at higher elevations tended to be a subset 
of those found at lower elevations. Although invasive and native species shared relatively similar func-
tional α diversity, they exhibited more significantly different functional β diversity. Elevation-related 
environmental factors played a major role in shaping functional dissimilarity and species similarity 
across plots. In contrast, functional redundancy at both α and β levels was more influenced by species 
status. Our findings highlight that invasive species exhibit a dissimilar strategy compared to native 
species along the elevational gradient and emphasize the importance of decreasing the introduction 
of alien species to better manage and prevent plant invasions in mountainous regions.

Key words: Environmental changes, functional redundancy, invasive plants, mountainous inva-
sion, multi-dimensional diversities

Introduction

Biological invasions significantly undermine biodiversity and ecosystem services, 
posing substantial risks to the economy, food security, and human health (Pyšek 
and Richardson 2010; IPBES 2023). Mountain ecosystems, global hotspots of 
biodiversity, were once considered less vulnerable to invasions (Pauchard et al. 
2009; Carboni et al. 2018), whereas recent evidence shows that a rapid increase 
in invasive species is now occurring even in the areas of high elevations (Guo et 
al. 2018a; Kueffer et al. 2013; Petitpierre et al. 2016; Zheng et al. 2024). This 
surge in invasions is drawing greater attention to their potential impacts on 
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mountainous regions (Alexander et al. 2011; Pyšek et al. 2011; Alexander et al. 
2016; Iseli et al. 2023), such as significant declines in native endemic species and 
thus species composition homogenization (Daehler 2005; Dainese et al. 2017; 
Haider et al. 2018; Haider et al. 2022).

As invasive species continue to spread upward, researchers are increasingly con-
cerned with whether biodiversity patterns differ between native and invasive spe-
cies (Arévalo et al. 2005; Haider et al. 2010; Guo et al. 2018a). Extensive evidence 
suggests a more pronounced negative trend with elevations in invasive species rich-
ness, in contrast to the unimodal or more negative patterns among native species 
(Guo et al. 2013; Guo et al. 2018a; Haider et al. 2018). Initially proposed to de-
pict the compositional differences among different sites (Whittaker 1960, 1972), β 
diversity’s variations along elevational gradients have been used to elaborate on the 
mechanisms of invasion in mountain regions (Kraft et al. 2011; Marini et al. 2013; 
Du et al. 2021). While debates persist regarding β diversity patterns along eleva-
tional gradients, numerous studies demonstrate a monotonic decrease for native 
species (Mori et al. 2013; Tello et al. 2015; Sabatini et al. 2018). Conversely, less 
emphasis has been placed on the β diversity patterns of invasive species in moun-
tainous regions, although it is acknowledged that invasive species tend to display 
lower species replacement along elevation gradients (Alexander et al. 2011; Marini 
et al. 2013; Steyn et al. 2017; Rana et al. 2024).

Taxonomic diversity provides certain measurements of biodiversity, but it does 
not consider the differences among species, such as functional aspects (Jarzyna and 
Jetz 2016; Ricotta and Pavoine 2024). Functional diversity, which pertains to the 
scope and value of traits in the community and reflects disparities/similarities in 
ecological niches among species (Tilman 2001), holds significant implications for 
community relationships and the community’s response to environmental change, 
and thus ecosystem functioning (Hillebrand et al. 2008; Hillebrand et al. 2008; 
Suding et al. 2008; de Bello et al. 2021). Investigating the functional difference 
between invasive and native species along elevational gradients can enhance our un-
derstanding of invasive strategies along the gradients (Ordonez et al. 2010; Divíšek 
et al. 2018). Studies have demonstrated that the native species are likely to show 
negative or unimodal functional α diversity-elevation patterns (Lee et al. 2013; 
Zhang et al. 2014; Thakur and Chawla 2019; Ratier Backes et al. 2023), and an 
upward tendency of functional β diversity with elevation (Swenson et al. 2011; 
Zhang et al. 2023; Lin et al. 2024). However, summarizing the patterns of func-
tional diversity for invasive species along elevational gradients remains challenging 
due to the limited amount of research. Given the complexity and importance of 
functional diversity, a more comprehensive framework is needed to better evaluate 
the multiple biodiversity patterns across these gradients (Fukami et al. 2005; Car-
doso et al. 2014; Bishop et al. 2015; Shen et al. 2024). More importantly, exploring 
the differences in diversity between native and invasive species aids in seeing the big 
picture of how invasive species take advantage of potentially stronger competitive 
capacity than native species along elevation to spread upward (Divíšek et al. 2018).

Recently, a novel framework has been proposed that integrates both taxonomic 
and functional diversity into mathematical algorithms and ecological theory, pro-
viding a comprehensive tool for examining each of the α and β biodiversity from 
multiple perspectives simultaneously (Ricotta et al. 2023; Ricotta and Pavoine 
2024). Specifically, this framework decomposes traditional taxonomic α diversity 
(S, Simpson’s diversity) into α functional diversity (Rao’s Q, reflecting species’ trait 
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variations within sites) and α functional redundancy (R, representing the simi-
larity between species pairs within sites), along with a complementary measure 
of taxonomic diversity, taxonomic similarity (D, Simpson’s dominance, empha-
sizing dominant species within sites) (Rao 1982; de Bello et al. 2007). Together, 
these three indices form a unified framework, providing a more exhaustive and 
consistent approach to elaborating the complex mechanisms driving community 
assemblages and biological invasions. Similarly, traditional taxonomic β diversity 
(DBC, classical Bray-Curtis dissimilarity) is decomposed into β functional dissimi-
larity (DKG, algorithmic dissimilarity coefficient, reflecting functional dissimilarity 
between species pairs among sites) and β functional redundancy (Rβ, quantifying 
shared functionality among species across sites), with species similarity (SBC, re-
flecting compositional similarity among sites) (Bray and Curtis 1957; Ricotta et 
al. 2021; Ricotta and Pavoine 2024). Species dominance (D) and the similarity of 
species across different sites are indicative of taxonomic stability, and functional re-
dundancy at both α (R) and β (Rβ) levels suggests functional stability. These factors 
are closely linked to the overall stability of the ecosystem. Additionally, functional 
diversity (Q) and the dissimilarity between sites (DKG) represent the distinct eco-
logical strategies employed by native and invasive species along elevation gradi-
ents, reflecting changes in their fitness. These novel frameworks provide a more 
holistic perspective on both the compositional and functional dynamics within 
ecosystems. By highlighting differences in diversity, the framework underscores the 
strategies of invasive species in mountainous regions and sheds light on potential 
invasion mechanisms from multiple perspectives.

Here, we constructed an experiment in the West Tianmu Mountain National 
Nature Reserve, located in Hangzhou, Zhejiang Province, one of the economic 
centers in East China, where invasive species have been found across all elevations, 
posing a significant threat to the local environment and economy (Hasigerili et al. 
2023). Using data collected from an elevational gradient exceeding 1200 m, we 
calculated decomposed α and β diversity indices following the methods of Ricotta 
and Pavoine (2023, 2024). By integrating multiple aspects of taxonomic and func-
tional biodiversity, we aimed to address the following questions: (1) what are the 
biodiversity patterns of invasive and native species at high and low elevations? (2) 
how do species status (i.e., invasive vs. native) and environmental factors influence 
these biodiversity patterns? For both α and β diversities, we hypothesize that, com-
pared to natives, invasive species exhibit lower taxonomic diversity and reduced 
functional diversity but higher functional redundancy. Moreover, we expect these 
differences to be more pronounced at higher elevations, likely due to dispersal lim-
itations and stronger environmental filtering, which may restrict the establishment 
of invasive species lacking specific traits.

Material and methods

Study area and experimental design

The experiment was carried out at the West Tianmu National Natural Reserve. 
Located in a subtropical climate region (30°18'-30°21'N, 119°24'-119°27'E), 
the mountain’s elevational gradient ranges from 300 m to 1,506 m a.s.l., with 
an average annual temperature of 8.8 °C at the summit and 14.8 °C at the 
foot of the hill (Jiang et al. 2023).
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We established 1 m2 plots being 1–3 m from the roadside at low (< 500 m) 
and high (> 1000 m) elevations, given the presence of either cliff or rocks 
alongside roads between 500 and 1000 m, rendering it unsuitable for set-
ting up surveying plots. In total, we established 15 low-elevation plots and 22 
high-elevation plots, with a minimum horizontal distance of 50 m between 
sample plots to reduce spatial autocorrelation.

Plot survey and trait measurement

We identified the species in the plots based on the “Flora of Tianmu Moun-
tain” (Chen et al. 2010). All identifiable plant species were recorded in each 
plot and the abundance of each species was estimated. We defined invasive 
species in our plots based on records of “A dataset on catalogue of alien plants 
in China” (Ma 2020; Lin et al. 2022). Species for which the “dataset” has a re-
cord of invasive status were categorized as invasive, and species with no records 
of alien status were categorized as native. There were 77 native species and 12 
invasive species in all investigated plots.

To capture the plant’s functional information, we measured nine functional 
traits for every species. Ten mature and healthy individuals of each species were 
selected to measure their height (cm), ground diameter (mm), and leaf thickness 
(mm) in situ. Three mature leaves were collected from the measured individuals 
and brought back to the laboratory in a cooling box to measure leaf area (mm2), 
fresh weight (mg), dry weight (mg) after drying, and leaf nitrogen content (%). 
For species with fewer than 10 individuals, trait information was measured for all 
mature and healthy individuals. In addition, we calculated specific leaf area (the 
ratio of leaf area and leaf dry weight, mm2/mg) and leaf dry matter content (the 
ratio of leaf dry weight and leaf fresh weight, mg/mg). We further calculated the 
mean value of each trait for each species.

Environmental variables

For each plot, the temperature (°C) of soil (6 cm below ground, T.soil), ground 
(T. ground), air (15 cm above ground, T.air), and soil humidity (%) were 
obtained using a TMS-4 recorder (Wild et al. 2019). Canopy density and 
slope were measured on-site. A fisheye lens was used to shoot at a distance of 
one meter above the plot center, and the canopy density was calculated via 
“Canopeo” (Patrignani and Ochsner 2015). We measured the slope of each plot 
with an instrumental slope angle meter. We collected soil samples in each plot 
following the three-point sampling method in which three corners of the plot 
were randomly selected to collect soil cores with a diameter of 5 cm and a length 
of 10 cm and then well mixed. For each soil sample, soil pH, silt content (Silt, 
%), clay content (Clay, %), sand content (Sand, %), total phosphorus content 
(TP, g/kg), total nitrogen content (TN, g/kg), total carbon content (TC, g/
kg), carbon to nitrogen ratio (C/N, %), carbon to phosphorus ratio (C/P, %), 
nitrogen to phosphorus ratio (N/P, %), nitrate nitrogen content (NH4

+, mg/
kg), ammonium nitrogen content (NO3

-, mg/kg), nitrate-ammonium nitrogen 
ratio (NH4

+/NO3
-, %), electrical conductivity (SEC, %), and water content 

(SWC, %) were obtained (Bremner 1960; Bowman 1988; Liu et al. 2021).
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Taxonomic diversity and composition

Species richness was calculated for native and invasive species separately in each plot. 
To demonstrate the differences in species composition among species status along 
the elevation, we performed the Nonmetric Multidimensional Scaling (NMDS) 
based on Bray-Curtis distances with the R package Vegan (Oksanen et al. 2024).

Functional α diversity

To compute native and invasive species’ functional diversity per plot, we scaled the 
trait matrices and calculated the relative functional Euclidean distance (the ratio of 
the original functional distance to the maximum functional distance) between spe-
cies within plots. Simpson’s dominance (D) is the probability that two individuals 
randomly selected from a plot will belong to the same species and is a complementa-
ry index of Simpson’s diversity. Functional diversity (Q), Rao’s quadratic diversity, is 
the mean of the dissimilarities between each pair of species i and j (dij) within plots, 
weighted by the species abundance (Rao 1982). Functional redundancy (R) is the 
difference between the classical Simpson diversity and functional diversity (Q) (de 
Bello et al. 2007). Based on the transformed functional matrix, we calculated Simp-
son’s dominance (D) and functional diversity (Q) using the “avid” package in R by 
Equations (1–2) and functional redundancy (R) by Equation (3) (Pavoine 2020).

D = ∑N
i=1 p

2
i	 (1)

Q = ∑N
i,j=1 pi pj dij	 (2)

R = 1 – D – Q	 (3)

where N is the number of species in each plot, p is the species’ relative abundance 
in each plot, and dij is the distance function between the i-th and j-th species.

Functional β diversity

Species similarity SBC is the complementary index of classical Bray-Curtis dis-
similarity, which depicts the taxonomic similarity based on the species relative 
abundance between plots (dij=1, i and j denote two different species) (Bray and 
Curtis 1957; Kosman 2014; Ricotta and Pavoine 2024). Functional dissimilarity 
DKG is the actual functional difference among plots based on functional distances 
between pairs of species i and j weighted by species relative abundances (Ricot-
ta et al. 2021). Functional redundancy Rβ, the difference between SBC and DKG, 
represents the functional similarities between plots (Ricotta and Pavoine 2024). 
SBC, DKG and Rβ between plots in the high and low elevation were computed 
with the functions ‘betaUniqueness’ of the R package “adiv” by Equations (4–6), 
respectively (Pavoine 2020; Ricotta and Pavoine 2024).

SBC = ∑N
i=1 min{pjh, pjk}	 (4)

DKG = minπ ∑
N
i=1 ∑

N
j=1π(i,j) × dij	 (5)
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Rβ = 1– SBC – DKG	 (6)

where N is the number of species in each plot, pjh and pjk are the j-th species’ 
relative abundance in the h-th and k-th plot respectively π(i,j) is the i-th species’ 
relative abundance in the h-th plot matched with j-th species in the k-th plot, and 
dij is the functional distance between the i-th and j-th species.

Statistical analyses

The results of functional α and β diversity were illustrated on the ternary diagram 
by the R package “ggplot2” (Wickham et al. 2024). To compare the decomposed 
functional diversity of native and invasive species in different elevations, we ap-
plied one-way ANOVA for each decomposed functional α and β diversity index. 
Multiple comparisons were then performed using the “TukeyHSD” method by the 
R package “multcomp” and the results of the comparisons were corrected by the 
“holm” method (Hothorn et al. 2008).

To explore how species status and environmental factors affect the different as-
pects of functional α and β diversity, we first applied a principal component analysis 
(PCA) for all environmental factors with the R package “FactoMineR”, and the 
first two PC axes that explained 61.6% variance of the environmental factors were 
used as the environmental variables (Appendix 1: Fig. A1) (Lê et al. 2008). We con-
structed linear mixed models with different diversity indices as response variables, 
environmental PC1 and PC2 as fixed effects, and the species status as a random 
intercept with the R package “lme4” (Bates et al. 2015). Alternatively, we fitted the 
model with environmental PC1 and PC2 as fixed effects and species status as ran-
dom intercepts and slopes, but ultimately excluded it because model performance 
did not improve significantly. We then extracted the proportions explained by the 
different factors (environmental PC1, PC2, status, and residual) for those diversity 
indices from our models via the R package “glmm.hp” (Lai et al. 2022, 2023).

All data analyses were carried out in R version 4.3.1 (R Core Team 2023).

Results

Differences in species richness and community composition

Noticeably, all of the surveyed plots observed the presence of invasive species. Native 
plant species exhibited significantly higher species richness compared to invasive spe-
cies, irrespective of elevation (p < 0.05). Additionally, there was no significant differ-
ence in species richness between low and high elevations for either native or invasive 
species (Fig. 1A). The species composition of native species varied significantly in 
the plots between low and high elevations (Fig. 1B). In contrast, the invasive species 
at high elevations were predominantly a subset of those at low elevations (Fig. 1C)

Functional α and β diversity

Overall, functional α and β diversity differed between invasive and native species, 
with especially pronounced distinctions in functional β diversity (Fig. 2). In terms 
of functional α diversity, invasive species tended to cluster in the lower left corner 
of the α ternary diagram (Fig. 2A), representing higher species dominance (D) 
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Figure 1. (A) Differences in species richness of native species (Native) and invasive species (Invasive) between the low and high elevations. 
Different letters indicate a significant difference (p < 0.05) from multiple post hoc comparisons with holm-adjustment of one-way ANO-
VA. Two-dimensional NMDS ordination of all plots showed differences in species composition of (B) Native and (C) Invasive species at 
different elevations (the stress values equal to 0.12 and 0.04, respectively). Shadow ellipses represent 95% confidence intervals around the 
centroids for the point types.

Figure 2. Ternary diagrams of functional (A) α diversity and (C) β diversity for native and invasive species at low and high elevations. 
One-way ANOVA with holm-adjusted multiple comparisons for each of the functional (B) α diversity and (D) β diversity components 
were shown in boxplots, with different letters indicating significant differences (p < 0.05). D, species dominance within plots; Q, function-
al diversity within plots; R, functional redundancy within plots; SBC, species similarity among plots; DKG, functional dissimilarity among 
plots; and Rβ, functional redundancy among plots.
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and lower functional redundancy (R) than natives (Fig. 2B). However, function-
al diversity (Q) did not differ significantly between invasive and native species, 
although invasive species at higher elevations exhibited considerably lower values. 
In addition, functional α diversity remained consistent across elevations for both 
invasive and native species (Fig. 2B). In contrast, differences in β diversity were 
more pronounced between the two groups. Specifically, invasive species tended to 
occupy the lower section of the β ternary diagram, indicating higher species simi-
larity (SBC) and reduced functional redundancy (Rβ). At higher elevations, invasive 
species were more frequently positioned towards the left side of the β ternary, 
reflecting increased SBC and decreased functional dissimilarity (DKG) (Fig. 2C, D).

Status and environment effects on functional α and β diversity

Species status and the first two environmental PCs (PC1 and PC2) collectively ex-
plained a substantial portion of the variation in functional α and β diversity (Fig. 3), 
accounting for 56.06% to 92.42% of the total variation. However, this pattern did 
not extend to functional diversity Q, where 80.13% of the variation remained un-
explained by factors included in the model. Notably, species status emerged as the 
dominant factor, contributing between 18.60% and 91.80% across all metrics, with 
the least influence on Q (18.60%) and the greatest impact on Rβ (91.80%).

Figure 3. Stacked bar plots demonstrate the explained variation in functional α (A) and (B) β di-
versity. Each bar represents the contribution of species status (invasive/native), the first two PC axes 
derived from environmental factors, and residuals. D, species dominance within plots; Q, functional 
diversity within plots; R, functional redundancy within plots; SBC, species similarity among plots; 
DKG, functional dissimilarity among plots; and Rβ, functional redundancy among plots.

Discussion

With the increasing frequency of invasion events in mountainous regions, the dif-
ferences in multiple diversity patterns between invasive and native species deserve 
deeper exploration to reduce the consequential damage that would follow. Consid-
ering the complexity and lack of harmonization of multiple diversity, we integrated 
taxonomic and functional information via decomposed α and β diversity methods 
to reveal the differences in diversity patterns between invasive and native species 
along an elevational gradient. We found that species of distinct statuses at separate 
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elevations held marked differences in patterns of multiple diversity, especially in β 
diversity, and the explanatory power of drivers was divergent among indices.

Consistent with our hypotheses, invasive species displayed higher species dom-
inance (D) and species similarity (SBC) compared to native species. Our observa-
tion revealed that invasive species found at higher elevations were a subset of the 
invasive species at lower elevations. Notably, invasive species at high elevations, 
Erigeron annuus (L.) Pers., Conyza canadensis (L.) Cronquist, Bidens frondosa L., 
Solidago canadensis L., Crassocephalum crepidioides (Benth.) S. Moore, all belonging 
to the Asteraceae family, predominantly adopted the ruderal strategy, character-
ized by traits like rapid dispersal and reproduction (Grime 1974; Hasigerili et 
al. 2023). These ruderal invasive species demonstrated stronger adaptability and 
greater abundance (Alexander et al. 2011), resulting in higher species dominance 
and species similarity at higher elevations. In contrast, native species showed great-
er species richness and lower species dominance, mainly due to the presence of 
numerous locally rare species with low abundance. Furthermore, native species 
showed a stronger elevational preference, with many species occurring only at spe-
cific elevations, unlike the invasive species at high elevations, which were gener-
alists and distributed throughout the entire elevation range (Marini et al. 2013; 
Steyn et al. 2017). Our results align with previous findings of distinct community 
assembly mechanisms between invasive and native species, with the former initial-
ly establishing at lower elevations with a subset spreading upward, and the latter 
showing minimal overlap between low and high elevations (Marini et al. 2013; 
McDougall et al. 2011; Zhang et al. 2015; Yang et al. 2018).

The functional diversity differences between invasive and native species further 
clarified the competitive strategies of invasive species. At lower elevations, invasive 
species occupied functional niche widths comparable to those of native species, sug-
gesting they had an equivalent advantage in colonization despite lower species rich-
ness and shorter residence time. Remarkably, at higher elevations, invasive species 
exhibited lower functional α diversity but higher functional β diversity compared 
to native species. The reduced functional diversity Q of invasive species at higher 
elevations was related to their lower species richness, though a substantial proportion 
remained unexplained. In our study, many invasive species from the same family 
exhibited significant trait dissimilarity across different plots. The greater trait dis-
similarity of invasive species compared to native species across elevations indicates a 
stronger resistance of these ruderal-strategy invasive species to environmental filter-
ing (Hasigerili et al. 2023). Furthermore, in line with previous findings that envi-
ronmental filtering can reduce functional β diversity (Perez Rocha et al. 2018; Diniz 
et al. 2021), we found that environmental factors (environmental PC1 and PC2) 
had a relatively high explanatory power for functional dissimilarity. Specifically, el-
evation-related factors such as temperature and soil nutrients (environmental PC1, 
Appendix 1: Fig. A1) played a more significant role than other factors like soil pH 
and SEC (environmental PC2), highlighting the critical influence of elevation in 
shaping diversity patterns. Our findings indicate that intensified human disturbanc-
es associated with lowland tourism development lead to resource fluctuations, creat-
ing opportunities for invasive species colonization and promoting trait divergence in 
both invasive and native species (Blumenthal 2006; Grime 2006). As disturbance in-
tensity declines with elevation, both invasive and native assemblages exhibit reduced 
functional dissimilarity. Notably, four out of five invasive species at high elevations 
originate from North America, which shares similarities in climate, vegetation types, 
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and floristic composition with China (Qian et al. 2017). In our study, these similar 
environmental conditions between native and introduced ranges could facilitate the 
rapid establishment of ruderal invasive species with pre-adapted traits (e.g., high-
er SLA, nutrient-rich foliage, and taller plant heights) in recipient ecosystems (van 
Kleunen et al. 2010; Guo et al. 2018b; Hasigerili et al. 2023).

The observed pattern of functional redundancy in our study was counterintuitive, 
as invasive species, despite having greater species dominance (D) and species similar-
ity (SBC), showed lower functional α and β redundancy compared to native species. 
This can probably be explained by the limiting similarity hypothesis (MacArthur and 
Levins 1967), where functional niche differentiation and reduced trait redundancy 
minimize competition among closely related invasive species, thus promoting their 
coexistence (Grime 2006; Kraft et al. 2014). Furthermore, environmental differ-
ences between low and high elevations had minimal impact on functional α and β 
redundancy for both invasive and native species, indicating that biotic interactions 
may play a more dominant role than environmental conditions in shaping local 
community functional similarity. In addition, despite substantial changes in spe-
cies composition, functional composition remained relatively stable, thus promoting 
community resilience (Biggs et al. 2020; Jarzyna et al. 2022). Communities with 
higher functional redundancy are likely more resistant to harsh conditions and are 
less susceptible to species loss or turnover (Hidasi-Neto et al. 2012; Gallagher et al. 
2013; Ricotta et al. 2016). Nevertheless, a considerable proportion of variation in 
diversity patterns apart from the functional redundancy remains unexplained. Previ-
ous studies have demonstrated other potential factors influencing elevational diver-
sity patterns, including anthropogenic drivers related to propagule pressure, such as 
reduced human activities and different land use types at higher elevations (Parks et 
al. 2005; Marini et al. 2013), water-energy dynamics (Jakobs et al. 2010) and area 
effects (Romdal and Grytnes 2007). Our results thus suggested the necessity of ex-
ploring other factors of the elevational gradient to better understand these patterns.

According to our results, the strong biological interactions generated by invasive 
species outweigh the environmental filtering effect and ultimately lead to invasive 
species’ upward spread trend along elevation. In the context of dramatic global 
change, alien species are dispersing intentionally or accidentally at a rapid speed. 
Once they overcome geographical barriers and become invasive, biotic interac-
tions would dominate the process of colonization even in mountainous areas with 
harsh environments (Cadotte et al. 2018). Thus, an effective prevention practice 
would be reducing anthropogenic disturbance and the introduction of alien spe-
cies (Kueffer et al. 2013; Fertakos and Bradley 2024).

Conclusion

By thoroughly examining various aspects of taxonomic or functional α and β di-
versity, our study provides a more comprehensive exploration of both invasive and 
native plant diversity patterns in mountain regions, offering new insights into the 
mechanisms behind invasion events. We found distinct differences between invasive 
and native species in terms of distribution and diversity variation. Native species 
demonstrated a stronger elevational preference, with notable species replacement, 
whereas invasive species at higher elevations were largely subsets of those at lower 
elevations. While invasive and native species occupied relatively similar α diversity 
spaces, their β diversity spaces were more significantly differentiated, likely due to 
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the strong adaptive capacity and more favorable competitive strategies of invasive 
species. Our study further confirms the utility of the novel diversity decomposition 
framework to provide a deeper understanding of the factors driving the distinct 
patterns between invasive and native species across environmental gradients.
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Appendix 1

Figure A1. The result of the principal component analysis (PCA), with cos2 representing the magni-
tude of the correlation between the environmental factors and the principal component.

Supplementary material 1

Data utilized for the analysis
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